Astronomers using NASA's Hubble Space Telescope have solved a 40-year mystery on the origin of the Magellanic Stream, a long ribbon of gas stretching nearly halfway around our Milky Way galaxy.
One of the many counterintuitive and bizarre insights of quantum mechanics is that even in a vacuum—what many of us think of as an empty void—all is not completely still. Low levels of noise, known as quantum fluctuations, are always present. Always, that is, unless you can pull off a quantum trick. And that's just what a team led by researchers at the California Institute of Technology (Caltech) has done.
By Kimm Fesenmaier
9 Aug 2013
Summer Series. Supernovas, the explosions of stars at the end of life, contain valuable information about the origin of the universe. Master’s student Alexis Arnaudon seeks to improve parameters of their simulation to lift the veil on some of the many remaining questions about them.
Organic solar cells, a new class of solar cell that mimics the natural process of plant photosynthesis, could revolutionise renewable energy - but currently lack the efficiency to compete with the more costly commercial silicon cells.
Quasars are active black holes – primarily from the early universe. Using a special method where you observe light that has been bent by gravity on its way through the universe, a group of physics students from the Niels Bohr Institute have observed a quasar whose light has been deflected and reflected in six separate images. This is the first time a quasar has been observed with so many light reflections. The results are published in the scientific journal, Astrophysical Journal.
ESO’s Very Large Telescope has captured an intriguing star-forming region in the Large Magellanic Cloud — one of the Milky Way’s satellite galaxies. This sharp image reveals two distinctive glowing clouds of gas: red-hued NGC 2014, and its blue neighbour NGC 2020. While they are very different, they were both sculpted by powerful stellar winds from extremely hot newborn stars that also radiate into the gas, causing it to glow brightly.
Mystery fans know that the best way to solve a mystery is to revisit the scene where it began and look for clues. To understand the mysteries of our universe, scientists are trying to go back as far they can to the Big Bang. A new analysis of cosmic microwave background (CMB) radiation data by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) has taken the furthest look back through time yet – 100 years to 300,000 years after the Big Bang – and provided tantalizing new hints of clues as to what might have happened.
More than 12 billion years ago a star exploded, ripping itself apart and blasting its remains outward in twin jets at nearly the speed of light. At its death it glowed so brightly that it outshone its entire galaxy by a million times. This brilliant flash traveled across space for 12.7 billion years to a planet that hadn't even existed at the time of the explosion - our Earth. By analyzing this light, astronomers learned about a galaxy that was otherwise too small, faint and far away for even the Hubble Space Telescope to see.
Researchers at the Niels Bohr Institute, together with colleagues in the US and Australia, have developed a method to control a quantum bit for electronic quantum communication in a series of quantum dots, which behave like artificial atoms in the solid state. The results have been published in the scientific journal Physical Review Letters.
Reportlinker.com announces that a new market research report is available in its catalogue: Global Quantum Cryptography Industry
Encoding information using quantum bits—which can be maintained in a superposition of states—is at the heart of quantum computing. Superposition states offer the advantage of massive parallelism compared to conventional computing using digital bits---which can assume only one value at a time.
Even though it’s summertime, a group of eight Central New York high school physics teachers are continuing their growth in the classroom by attending class on the SU hill.
Harry “Hap” McSween, a UT professor who is a leading expert on the composition of Mars and meteorites, will be awarded the Whipple Award from the American Geophysical Union.
For quantum physicists, entangling quantum systems is one of their every day tools. Entanglement is a key resource for upcoming quantum computers and simulators. Now, physicists in Innsbruck/Austria and Geneva/Switzerland realized a new, reliable method to verify entanglement in the laboratory using a minimal number of assumptions about the system and measuring devices.
Superconductors carry electricity with zero loss, but that perfect performance only occurs at temperatures hundreds of degrees below zero. Warmed beyond those frigid conditions, the materials cross a critical temperature threshold and the superconductivity breaks down. But high-temperature superconductors (HTS)—warmer, but still subzero—may have untapped potential because their underlying mechanism remains a mystery.