For millions of years after the Big Bang, there were no stars, or even galaxies to contain stars. During these “Cosmic Dark Ages,” neutral hydrogen gas dominated the universe. When clouds of primordial hydrogen gas started to collapse from gravity, they became stars.
By Pete Zrioka
31 Aug 2013
Nobel Laureate Andre Geim of the University of Manchester, UK, has been named the 2012 recipient of the Richard E. Prange Prize and Lectureship in Condensed Matter Theory and Related Areas. Dr. Geim will receive a $10,000 honorarium and deliver a public presentation entitled "Random Walk to Graphene” at the University of Maryland, College Park, on Oct. 16, 2012.
The origin of cosmic rays in the universe has confounded scientists for decades. But a study by researchers using data from the IceCube Neutrino Observatory at the South Pole reveals new information that may help unravel the longstanding mystery of exactly how and where these “rays” (they are actually high-energy particles) are produced.
NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, is giving the wider astronomical community a first look at its unique X-ray images of the cosmos. The first batch of data from the black-hole hunting telescope is publicly available today, Aug. 29, via NASA's High Energy Astrophysics Science Archive Research Center, or HEASARC.
The combined computing power of 200,000 private PCs helps astronomers take an inventory of the Milky Way. The Einstein@Home project connects home and office PCs of volunteers from around the world to a global supercomputer.
Using NASA’s super-sensitive Chandra X-ray space telescope, a team of astronomers led by Q. Daniel Wang at the University of Massachusetts Amherst has solved a long-standing mystery about why most super massive black holes (SMBH) at the centers of galaxies have such a low accretion rate—that is, they swallow very little of the cosmic gases available and instead act as if they are on a severe diet.
Disrupting the symmetrical structure of a solid-state topological crystalline insulator creates mass in previously mass-less electrons and imparts an unexpected level of control in this nascent class of materials, an international team of researchers reports in the current edition of Science Express.
Stanford solar scientists have solved one of the few remaining fundamental mysteries of how the sun works.
For years, scientists have observed that the black hole at the center of our galaxy has a surprisingly small appetite.
By Jennifer Chu
30 Aug 2013
Astronomers using NASA's Chandra X-ray Observatory have taken a major step in explaining why material around the giant black hole at the center of the Milky Way Galaxy is extraordinarily faint in X-rays. This discovery holds important implications for understanding black holes.
Physicists have reproduced a pattern resembling the cosmic microwave background radiation in a laboratory simulation of the Big Bang, using ultracold cesium atoms in a vacuum chamber at the University of Chicago.
A modified law of gravity correctly predicted, in advance of the observations, the velocity dispersion—the average speed of stars within a galaxy relative to each other—in 10 dwarf satellite galaxies of the Milky Way’s giant neighbor Andromeda.
For the first time, astronomers have seen the image of a distant quasar split into multiple images by the effects of a cloud of ionized gas in our own Milky Way Galaxy. Such events were predicted as early as 1970, but the first evidence for one now has come from the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope system.
Photonics, the study of light in the broadest sense of the term, plays a major role at EPFL. Almost 30 labs focus on different aspects of photonics, like the design of lasers, construction of high-performance solar cells and development of tomorrow's telecommunications.
An international team led by astronomers in Brazil has used ESO’s Very Large Telescope to identify and study the oldest solar twin known to date. Located 250 light-years from Earth, the star HIP 102152 is more like the Sun than any other solar twin — except that it is nearly four billion years older.