TC
Professor
Department of Physics, University of Illinois at Urbana-Champaign
170 Seitz Materials Research Lab
Urbana
IL
61801
United States
PH:
1 (217) 333-2593
Email:
[email protected]
Click here to visit Web Site
Background
After receiving a B.S. in physics from the National Taiwan University in 1971, Professor Chiang received his Ph.D. in physics from the University of California-Berkeley in 1978. He joined the Department of Physics at the University of Illinois in 1980 after working as a postdoctoral fellow at the IBM T.J. Watson Research Center in Yorktown Heights, NY.
Professor Chiang has done seminal work on bulk, surface, and interface states of metals and semiconductors using photoemission techniques. Using synchrotron-radiation photoemission spectroscopy, scanning tunneling microscopy, and molecular beam epitaxy techniques, he has examined the growth processes and the resulting physical properties of various surface and interface systems that are of fundamental scientific interest and technological relevance.
He was one of the first to demonstrate that atoms of single-crystal surfaces have binding energies different from the bulk atoms and that the energy shifts are detectable with photoemission, using synchrotron radiation as a light source. He has pioneered the application of angle-resolved and core-level photoemission to interface, quantum-well, and superlattice research and expanded it to include novel configurations and magnetic systems. He is currently carrying out X-ray scattering and diffraction experiments at the Advanced Photon Source at Argonne National Laboratory.
Most recently, Professor Chiang and his students have fabricated miniature electron interferometers containing atomically smooth mirrors spaced by a few atomic layers. Exploiting the fact that electrons bounce back and forth between two interfaces and create standing waves, Professor Chiang's group are able to measure the electron wavelength in their samples with very high accuracy. In addition to his exceptional experimental achievements, Professor Chiang is an outstanding theorist who is able to develop theoretical models for his experimental results.