On the big screen, in video games and in our imaginations, lightsabers flare and catch when they clash together. In reality, as in a laser light show, the beams of light go through each other, creating spiderweb patterns.
That clashing, or interference, happens only in fiction – and in places with enormous magnetic and electric fields, which happens in nature only near massive objects such as neutron stars. Here, the strong magnetic or electric field reveals that vacuum isn't truly a void. Instead, here when light beams intersect, they scatter into rainbows. A weak version of this effect has been observed in modern particle accelerators, but it is completely absent from our daily lives or even normal laboratory environments.
Yuli Lyanda-Geller, professor of physics and astronomy in the College of Science at Purdue University, in collaboration with Aydin Keser and Oleg Sushkov from the University of New South Wales in Australia, discovered that it is possible to produce this effect in a class of novel materials involving bismuth, its solid solutions with antimony and tantalum arsenide. With this knowledge, the effect can be studied, potentially leading to vastly more sensitive sensors as well as supercapacitors for energy storage that could be turned on and off by a controlled magnetic field.
"Most importantly, one of the deepest quantum mysteries in the universe can be tested and studied in a small laboratory experiment," Lyanda-Geller said. "With these materials, we can study effects of the universe. We can study what happens in neutron stars from our laboratories."
Purdue Professor's Expertise
Yuli Lyanda-Geller is an expert in mesoscopic physics and interference phenomena, optical phenomena in nanostructures and the physics of quantum information.