Posted in | News | Quantum Computing

Improving Quantum Computers

For decades, experts have predicted that quantum computers will someday perform difficult tasks, such as simulating complex chemical systems, that can’t be done by conventional computers. But so far, these machines haven’t lived up to their potential because of error-prone hardware. That’s why scientists are working to improve the qubit –– the basic hardware element of quantum computers, according to an article in Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society.

Regular computers use bits to store data, which are represented as a “1” to indicate current flowing through a transistor or a “0” for no current. In contrast, qubits have a superposition of energy states –– 0, 1, or many places in between, which theoretically allows quantum computers to store and process much more information than a conventional computer. However, today’s qubits are fragile and highly prone to errors caused by environmental factors such as vibrations or temperature changes, Senior Correspondent Katherine Bourzac writes.

So far, scientists have proposed about 20 qubit designs, and there’s no clear winner. However, today’s leading technologies are based on superconducting circuits (which include an insulator sandwiched by metals that become superconductors at extremely low temperatures) and trapped ions (charged atoms suspended in a vacuum by electromagnetic fields). Researchers are working on better manufacturing processes and control equipment for these technologies. But they’re also exploring new materials for quantum computing, such as silicon spin devices and topological materials, that might reduce noise and error, allowing quantum computers to finally realize their potential.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.