Three UC Riverside Scientists Join the Center for Spintronic Materials, Interfaces, and Novel Architectures

Three University of California, Riverside scientists and engineers are members of a new national research center — the Center for Spintronic Materials, Interfaces, and Novel Architectures (C-SPIN) — focused on developing the next generation of microelectronics. Led by the University of Minnesota, C-SPIN is being supported by a five-year $28 million grant, about $3 million of which is allocated to UC Riverside.

UC Riverside’s Roland Kawakami (top), Ludwig Bartels (center) and Cengiz Ozkan are members of a new national research center focused on developing the next generation of microelectronics. Credit: UCR Strategic Communications

The grant was awarded by the Semiconductor Research Corporation, a global research collaboration of private companies, universities and government agencies; and the Defense Advanced Research Projects Agency (DARPA).

C-SPIN at the University of Minnesota will bring together top researchers from across the nation, such as UCR's Roland Kawakami, Ludwig Bartels and Cengiz Ozkan, to develop technologies for spin-based computing and memory systems. Unlike today's computers, which function on the basis of electrical charges moving across wires, emerging spin-based computing systems will process and store information through spin, a fundamental property of electrons.

"Conventional silicon electronics is running out of steam in terms of improving its performance." said Kawakami, a professor of physics and astronomy. "It is known as the 'end of the roadmap' for silicon-based technologies. Silicon won't go away, but there are physical limits to how small silicon transistors can get before they stop working. Technology is now getting very close to this limit, so the semiconductor companies are looking for alternative methods for continued improvement in electronics."

Kawakami's research group will be working on the fabrication and testing of spintronic devices made from two-dimensional crystals, namely metal dichalcogenides (inorganic materials with unique electronic properties) and graphene. Bartels's and Ozkan's research groups will be working on the growth and characterization of two-dimensional metal dichalchogenides. Bartels, a professor of chemistry, Ozkan, a professor of mechanical engineering, and Kawakami are part of the Materials Science and Engineering Graduate Program at UCR.

C-SPIN's director Jian-Ping Wang, an electrical and computer engineering professor at the University of Minnesota, explained that the ability to scale semiconductor technology has led to the information revolution of the past half-century.

"However, today's semiconductor technology is reaching its fundamental limits in terms of density and power consumption," he said. "Spin-based logic and memory based on the hybridization of magnetic materials and semiconductors have the potential to create computers that are smaller, faster and more energy-efficient than conventional charge-based systems."

Spin-based computing has gained considerable interest recently due to advances in a number of areas. It can combine memory and logic at the device and circuit level, thereby leading to much faster operation for data-intensive applications. This is crucial in the information age and includes applications such as searching, sorting, and image recognition.

Especially important is the room temperature spin transport in graphene with high spin injection efficiency, first demonstrated by Kawakami's group. C-SPIN will help develop the graphene spintronic devices as well as explore new two-dimensional metal dichalcogenides, which are expected to allow for more facile spin manipulation.

"All the work on spin in two-dimensional crystals is at the cutting edge of science and engineering," Kawakami said.

Research at C-SPIN is expected to have an impact beyond the world of computer science and engineering resulting in advances in nanotechnology, materials science, physics, chemistry, circuit design, and many other fields. Headquartered at the University of Minnesota-Twin Cities, the center will fund research for 31 leading experts from 14 universities working in six scientific disciplines. C-SPIN will also fund research from more than 60 doctoral and post-doctoral students and host industry researchers-in-residence.

In addition to the University of Minnesota-Twin Cities and UCR, the 12 other universities involved are Carnegie Mellon University; Cornell University; Johns Hopkins University; Massachusetts Institute of Technology; Pennsylvania State University; Purdue University; University of Alabama; University of California, Santa Barbara; University of Iowa; University of Michigan; University of Nebraska; and University of Wisconsin-Madison.

Industry partners include Applied Materials, Global Foundries, IBM, Intel Corporation, Micron Technology, Raytheon, Texas Instruments and United Technologies.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.