Posted in | News | Quantum Physics

Quantum Dynamics of Quasiparticles in Superconductors can be Mapped onto Quantum Rotors

A team of researchers led by University of Notre Dame physicist Boldizsar Janko has announced analytical prediction and numerical verification of novel quantum rotor states in nanostructured superconductors.

Boldizsar Janko

The international collaborative team points out that the classical rotor, a macroscopic particle of mass confined to a ring, is one of the most studied systems in classical mechanics. In a paper appearing in the April 1 issue of the journal Nature Scientific Reports, Janko and colleagues Shi-Hsin Lin, Milorad Milosevic, Lucian Covaci and Francois Peeters of the Universiteit Antwerpen in Belgium described how the quantum dynamics of quasiparticles in several classes of nanostructured superconductors can be mapped onto a quantum rotor. These results are the culmination of a nearly decade-long collaboration started in 2005, when Milosevic, Covaci and Peeters were visiting fellows of Notre Dame's Institute for Theoretical Sciences and Lin was a graduate student in Notre Dame's Department of Physics.

Besides being a remarkable example of a quantum analogue of a classical system, the superconducting rotor has a number of significant characteristics. It can be realized in a broad range of superconducting systems and has a tunable inertia and gravitational field. It also can be externally manipulated through effective tilt, pulsed gravity and pivot oscillations and can be converted to a quantum pendulum or be driven to a chaotic regime.

This realization of the quantum rotor therefore has the potential to provide insights into a variety of phenomena, which will be the focus of further experimental and theoretical investigation, possibly leading to practical applications such as advanced detectors.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.