Posted in | News | Quantum Dots

Magnolia Solar to Incorporate Quantum Dot Structures into Advanced Photovoltaic Devices

Magnolia Solar, developer of revolutionary thin-film solar cell technologies employing nanostructured materials and designs, announced today that its wholly owned subsidiary, Magnolia Solar, Inc., received a $750,000 Phase II award from the United States Air Force as part of the Small Business Technology Transfer (STTR) program.

The goal of this two-year program is to develop ultra-high efficiency, thin-film solar cells for space power applications. The work on this contract complements the work on high-efficiency solar cells previously funded by the Air Force and announced in November 2011. Both of these funded contracts are supporting Magnolia Solar's development program.

Photovoltaic devices can provide a mobile source of electrical power for a variety of defense and commercial applications in both space and terrestrial environments. Many of these mobile power applications can directly benefit from enhancements in the efficiency of the photovoltaic devices. Today, state-of-the-art photovoltaic devices employ multi-junction designs that have achieved efficiencies over 30% in normal sunlight and exceed 40% under concentration. However, current approaches are reaching practical limits due to the complexity and cost of the multi-junction device design. The funding to Magnolia Solar from the Air Force is intended for the build out of these nanostructured solar cells that have the potential to deliver ultra-high efficiencies in single-junction devices; efficiencies that can potentially approach 50% in un-concentrated sunlight. We believe single-junction solar cells are inherently less complex than multi-junction cells and will potentially provide ultra-high efficiency at a lower cost.

Dr. Ashok K. Sood, President and CEO of Magnolia Solar Corporation, stated, "We are working to improve the efficiency of photovoltaic devices via novel materials combined with innovative device designs. Quantum dot structures with excellent structural and optical properties were demonstrated during the Phase I program and are intended to be incorporated into advanced photovoltaic devices during the Phase II effort. These structures have the potential to enable photovoltaic devices to reach new levels of performance for power output efficiency."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.