Posted in | News | Quantum Computing

Study Findings Provide Insights into Topological Quantum Computation

Transport of Majorana particles by switching gate voltages at the constriction junctions. However, Majorana particles captured in the core of superconducting vortex are not shown here explicitly.

A research group at the International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) investigated theoretically the charge-neutral Majorana fermions, and proposed a method for their manipulation.

Transport of Majorana particles by switching gate voltages at the constriction junctions. However, Majorana particles captured in the core of superconducting vortex are not shown here explicitly.

Research associates Dr. Qi-Feng Liang and Dr. Zhi Wang, and PI Dr. Xiao Hu at the International Center for Materials Nanoarchitectonics (WPI-MANA; Director-General: Dr. Masakazu Aono), National Institute for Materials Science (President: Dr. Sukekatsu Ushioda) investigated theoretically the charge-neutral Majorana fermions, and proposed a method for their manipulation. Using a nano quantum device designed based on the topological properties of special superconducting states, Majorana fermions can be transported and exchanged by merely switching local gate voltage.

Majorana fermion was proposed by the Italian theoretical physicist Ettore Majorana in 1937, but their existence has not yet been confirmed as elementary particle. Recently it has been revealed that quasiparticle excitations of special superconducting states behave similarly to Majorana fermions. While Majorana fermions may be stable due to charge neutrality, they are difficult to manipulate using an external field for the same reason.

The MANA research group confirmed that, unlike electrons and photons, braiding of Majorana particles in the designed quantum device obeys non-Abelian statistics, which can be used for quantum computation. This research result contributes to the key technology of topological quantum computation.

The research paper has been published in Europhysics Letters of the European Physical Society as an Editor’s choice. See: http://iopscience.iop.org/0295-5075/99/5/50004/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.