Editorial Feature

An Overview of Harmonic Oscillators

This article provides an overview of harmonic motion, classical harmonic oscillators, and quantum harmonic oscillators. 

oscillators, harmonic oscillators, quantum harmonic oscillators, quantum

Image Credit: Fouad A. Saad/Shutterstock.com

What is Harmonic Motion?

Harmonic oscillators (HOs) are systems that exhibit and are often used to generate harmonic motion, which in most cases are simple harmonic motions (SHMs). SHM is a periodic motion with a sinusoidal time dependence in which the mass returns to its equilibrium position after a certain interval of time, and the acting force is opposed by the restoring force, which is proportional to the corresponding displacement and opposite in direction.

Some standard HOs are the mathematical models of spring, pendulum, elasticity, acoustic waves, electromagnetic waves, AC circuits, molecular vibration, lattice vibration, and several optical phenomena. Although in real-world applications a true harmonic motion is hindered by energy loss due to damping, the incorporation of periodic external energy is used to achieve the desired harmonic motion.

An SHM is mathematically represented by

x(t) = A.sin (ωt) + B.cos (ωt)

where x = displacement, ω = angular frequency, and t = time.

All HOs have a harmonic potential that drives oscillations, it is represented as a parabolic curve relative to the displacement. Based on the difference in mathematical approach between classical and quantum mechanics, HO is classified into classical oscillator (CO) and quantum oscillator (QO).

Classical Harmonic Oscillator

A spring-mass model is a typical example of CO in which macroscopic kinetics analysis is performed through classical mechanics. The acting force that stretches or compresses a spring is opposed by an equal restoring force due to its stiffness.

Fa = -Fr (‘-ve’ sign is due to opposite direction)

mẍ(t) = -kx(t)

mẍ(t) + kx(t) = 0

ẍ(t) + ω2x(t) = 0        (ω2 = k/m)

where Fa = acting force, Fr = restoring force, m = mass, k = stiffness, ẍ(t) = acceleration, and x(t) = displacement.

The maximum potential energy of the spring-mass model is V(x) = ½ kx2 or ½ mω2x2.

Quantum Harmonic Oscillator

Similarly, for QOs such as electromagnetic wave oscillators, linear transform eigenvector-eigenvalue-based Schrödinger equation is used. It has a Hamilton energy operator, the summation of the kinetic energy and potential energy as eigenvector and total energy as eigenvalues. Further, it is classified into two types, viz. time-dependent Schrödinger equation and time-independent Schrödinger equation, which is expressed as

where ℏ = reduced Planck constant, p = momentum operator , ѱ = wave function, E = total energy, and Ĥ = Hamiltonian energy operator.

The ground state energy of the QO model is E0 = ℏω/2, where the wavefunction is Gaussian and the subsequent eigenvalues are 

The time-dependent Schrödinger equation is expressed as:


Importance of Schrödinger Equation in Quantum Harmonic Oscillators

Schrödinger equation has significant applications in quantum physics as harmonic motion is one of the fundamental motions in quantum mechanics and the equation gives the position (probability density) and momentum (continuity) of non-relativistic particles corresponding to their energy state.

Quantum Chemistry 5.1 - Harmonic Oscillator Model

Video Credit: TMP Chem/Youtube.com

Additionally, it applies to spinless particles, contrary to the Klein-Gordon equation and the Dirac equation. Moreover, the general form of the Schrödinger equation is true for quantum field theory (QFT), which is a combination of quantum mechanics and special relativity, also known as relativistic quantum mechanics.

However, the QO model with one particle, single SHM, or linear Schrödinger equation is of limited use in relativistic quantum mechanics due to the consideration of an uncertain number of particles. Moreover, there is a class of quantum oscillators, which is non-harmonic, non-linear, and the difference between each energy level is not constant (En+1 – En ≠ ℏω/2) such as Morse anharmonic oscillator.

Recent Studies on Harmonic Oscillators

Currently, many research works are focusing on the behavior of coupled quantum harmonic oscillators.

In a recent study, researchers developed a new methodology to precisely estimate the resonance frequency of a linear harmonic oscillator, which is fundamentally limited by the presence of noises owing to thermodynamic and quantum perturbations, by using the Cramer Rao lower bound model under a wide range of measurement conditions. Another study suggested that the upper bound of entanglement between identical oscillators is approximately inversely proportional to the particle number.

References and Further Reading

Lecture05.dvi (umich.edu)

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_

https://www.bu.edu/quantum/notes/QuantumMechanics/HarmonicOscillator.pdf

Fundamental limits and optimal estimation of the resonance frequency of a linear harmonic oscillator | Communications Physics (nature.com)

Quantum entanglement in coupled harmonic oscillator systems: from micro to macro - IOPscience

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Bismay Prakash Rout

Written by

Bismay Prakash Rout

Bismay is a technical writer based in Bhubaneshwar, India. His academic background is in Engineering and he has extensive experience in content writing, journal reviewing, mechanical designing. Bismay holds a Masters in Materials Engineering and BE in Mechanical Engineering and is passionate about science & technology and engineering. Outside of work, he enjoys online gaming and cooking.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Prakash Rout, Bismay. (2022, January 25). An Overview of Harmonic Oscillators. AZoQuantum. Retrieved on November 21, 2024 from https://www.azoquantum.com/Article.aspx?ArticleID=278.

  • MLA

    Prakash Rout, Bismay. "An Overview of Harmonic Oscillators". AZoQuantum. 21 November 2024. <https://www.azoquantum.com/Article.aspx?ArticleID=278>.

  • Chicago

    Prakash Rout, Bismay. "An Overview of Harmonic Oscillators". AZoQuantum. https://www.azoquantum.com/Article.aspx?ArticleID=278. (accessed November 21, 2024).

  • Harvard

    Prakash Rout, Bismay. 2022. An Overview of Harmonic Oscillators. AZoQuantum, viewed 21 November 2024, https://www.azoquantum.com/Article.aspx?ArticleID=278.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.